
IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 12, DECEMBER 1994 1429

Constant Time Inner Product and Matrix
Computations on Permutation Network Processors

Ming-Bo Lin and A. Yavuz Oruq

Abstract-Inner product and matrix operations find extensive use in
algebraic computations. In this brief contribution, we introduce a new
parallel computation model, called a permutation network processor, to
carry out these computations efficiently. Unlike the traditional parallel
computer architectures, computations on this model are carried out by
composing permutations on permutation networks. We show that the sum
of N algebraic numbers on this model can be computed in O(1) time
using N processors. We further show that the inner product and matrix
multiplication can both be computed on this model in O(1) time at the
cost of O(.V) and 0 (N 3) , respectively, for N element vectors, and ,V x N
matrices. These results compare well with the time and cost complexities
of other high level parallel computer models such as PRAM and CRCW
PRAM.

Index Terms-Complex inner product, complex matrix multiplication,
permutation networks, real inner product, and real matrix multiplication.

I. INTRODUCTION
Inner product and matrix operations form the core of computations

of vector and array processors and signal and image processing
algorithms. Traditional architectures for carrying out such operations
are based on reducing vector computations into scalar operations
such as binary addition and multiplication [13], [14]. As a result,
much of the computations in vec:tor and array processors is handled
by conventional arithmetic circuits such as carry look ahead adders,
recoded and cellular array multipliers and dividers [4]. While these
conventional circuits are optimized for speed and hardware, they still
rely on a variety of building blmocks such as adder, subtractor and
multiplier cells which often lead to nonuniform arithmetic circuits
for vector processors.

In this brief contribution, we propose a new concept to cany
out vector and matrix computations. Unlike the traditional archi-
tectures, this concept is based on coding not only the operands
but also the operations over the operands in such a way that
a vector or matrix computation reduces to composing permuta-
tion maps. Each operand is coded into a permutation and addition
or multiplication of two operands is carried out by composing
the permutations that correspond to these operands on a permu-
tation network. As a result, bo,th addition and multiplication are
reduced to a single computation, Le., that of composing permuta-
tions. In addition, any other computation involving addition, sub-
traction and multiplication operations are also reduced to composing
permutations.

We show that, on this new computation model, called a permutation
network processor, the sum of il’ n-bit numbers, the inner product of
two vectors, each containing LV n-bit elements, and the multiplication

Manuscript received July 31, 199:2; revised June 5 , 1993 and September
13. 1993. This work was supported in part by the Ministry of Education,
Taipei, Taiwan, Republic of China aind in part by the Minta Martin Fund of
the School of Engineering at the University of Maryland.

M.-B. Lin is with the Electronic Engineering Department, National Taiwan
Institute of Technology, 43, Keelung Road Section 4, Taipei, Taiwan.

A. Y. Oruq is with the Electrical Engineering Department, Institute of
Advanced Computer Studies, University of Maryland, College Park, MD
20742-3025 USA; e-mail: yavuz@eng.umd.edu.

lEEE Log Number 9404362.

of two N x N matrices with n-bit entries can all be computed in O(1)
steps. The first two computations require O (N) processors and the
matrix multiplication requires (N 3) processors, where each processor
handles an n-bit input, and has O ((n + 1gN)’) bit-level cost and
O(n + IgN) bit-level delay.

We note that these results compare well with the complexi-
ties for the same computations on other models. For example,
on a PRAM model [I , 51, all three computations take O(1gN)
time with the same numbers of processors, where each processor
has two O (n + IgN)-bit inputs, and uses arithmetic circuits with
O(nZ + 1gN) bit-level cost. On a cube-connected parallel com-
puter, the same three computations also take O(1gN) time with
the same numbers of processors and with the same processor bit-
level complexity [I]. On the combining CRCW PRAM, the same
three computations can all be done in 0(1) time and with the
same numbers of processors, where each processor has two O(n +
IgN)-bit inputs, and with O(n2 + 1gN) bit-level cost. In addition,
this model must have a circuit to combine up to N concurrent
writes.

We also note that, even though the permutation network processor
model stands on its own, it ties with some earlier computation
models that were reported in the literature. One such model, called
a processing network, was given in [I21 where a mesh of pro-
cessing elements was used to compute certain algebraic formu-
las. The processing elements in this model can be programmed
for arithmetic and routing functions whose combinations lead to
various algebraic expressions on the mesh topology. The main
difference between this model and the permutation network pro-
cessor model is that the latter does not rely on an explicit use
of adder or multiplier circuits; rather it combines them together
using shift permutations. More recently, a new parallel computer
model, called a reconfigurable bus system, has been introduced
to solve a wide range of problems including sorting problems
[15], graph problems [9], [16], and string problems [2]. All these
problems have been shown to be solvable in O(1) time on the
reconfigurable bus system model. As in the processing network
model, processors are connected in this model by some fixed topology
such as the mesh, and each processor can be programmed for
some data processing as well as routing functions. It is assumed
that the signals can be broadcast between processors in constant
time regardless of how far the broadcast is carried [SI, [15], [16].
The essence of this assumption is that once the processors are
simultaneously programmed for some routing functions, the signals
that pass through them only encounter a propagation delay which
is short enough so as to be considered a constant. The same
assumption also holds for our model. Again, the main difference
between this model and the permutation network processor is that
the latter relies only on permutation maps while the former al-
lows its processors to perform both data processing and routing
functions.

Finally, we should note that all computations described in the brief
contribution are carried out modulo N. In the case that J?i is not
a power of 2 (which is typically the case because of coprimality
contstraints), the results should be converted to binary and this will
exact additional time and hardware cost. Also, if the operands are
given in binary they must be encoded before they can be computed on.
Our complexity expressions do not include these additional encoding
and decoding time and cost. The time and hardware complexities
of encoding and decoding steps are given in [6], [7] and will be
published elsewhere.

0018-9340/94$04.00 0 1994 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:19 from IEEE Xplore. Restrictions apply.

mailto:yavuz@eng.umd.edu

1430 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 12, DECEMBER 1994

I

t t *-t
n-bit input (Y)

Fig. 1. Organization of a permutation network arithmetic processor

11. THE PERMUTATION NETWORK PROCESSOR MODEL

The computations to be described in subsequent sections all rely
on a permutation network processor model which was introduced in
[IO]. Here we give a brief overview of this model and introduce some
changes so as to make it suitable for these computations.

A. The Model

A permutation network processor is obtained by cascading three
components together as shown in Fig. 1: an r-out-of-s residue
encoder, a permutation network stage, and an r-out-of-s residue
decoder, where r and s are positive integers. The r-out-of-s residue
encoder has rn inputs, representing an m-bit number X , and r
sets of outputs, XI. X 2 , XT., where X , contains m outputs,
for i = 1 5 2 : . . , r . Based on the value of its input -Y, the r -
out-of-s residue encoder sets exactly one output in each X , to
1 and all other outputs to 0. More precisely, the j t h output in
S, is set to 1, where j = X mod m,. The r-out-of-s residue
decoder is an r-out-of-s residue encoder whose inputs and outputs
are switched. That is, it has r sets of inputs R1. R z , R,. each
of which contains a 1 in exactly one of its inputs, and a set of m
outputs that represents an n-bit result. The 1's in RI , R2,. . . . R,
are combined into an ~n-bi t result whose residues with respect to
moduli rr? 1, ni 2 , m 7' are indicated by the positions of 1's in
R I , Rz, R, . The variable s specifies the number of outputs
(inputs) of the T-out-of-s residue encoder (decoder). That is, s =
n 1 1 + In., + . . . + 172..

The center stage of the permutation network arithmetic processor
consists of a permutation network with .s inputs and s outputs. In
addition to s inputs that are connected to the outputs of the r-
out-of-s residue encoder, the permutation network also has an n-bit
control input that represents the second operand I' to the arithmetic
processor. The permutation network encompasses T subnetworks
 VI, L V 2 , iVT, where the lines in S, from the r-out-of-s residue
encoder form the inputs of network 3' and the lines in R, form
its outputs. Network Y, consists of rlg ni,] stages of switches,
numbered rig m,1 - 1 , . .., 1 , 0 in that order, from left to right,
each having nzz inputs and m , outputs such that the switch in stage
k . !I- = 0.1, ' . . . [lg tn,] - 1 has two switching states:

state 0: input .j is connected to output j , for all j = 0.1.. . ,
n,, - 1;
state 1: input .j is connected to output j + 2k mod m, , for all
j = O . l : . . , ~ n , - 1.

Thus, the switch in stage k of network N, realizes either the
identity permutation on its inputs (state 0) or the circular right
shift permutation where all inputs are circularly shifted to right by

2 k mod m, positions (state 1) . The permutations that are realized
by networks N 1 . iY2,. . . , Nr are determined by the residues, y, =
Y mod m,: 1 5 i 5 r . The residue y, is computed from k' by
the binary residue encoder in Fig. 1 which converts Y mod nit to
its binary representation. The kth least significant bit of y, then
determines the state of the switch in the kth stage in network Y,.
If that bit is 0 then the stage is set to state 0 and if it is 1 then the
stage is set to state I .

In most of the computations that follow, we will need to cascade
several permutation network processors together. In such cases, the
adjacent T-out-of-s residue decoders and encoders in the intermediate
stages of the cascade are redundant (they cancel out), and therefore,
will be removed from the model. In this reduced model, we only
retain the shift network and binary residue encoder sections of the
permutation network arithmetic processors in the intermediate stages.
The r-out-of-s residue encoder of the processor in the first stage and
the r-out-of-s decoder of the processor in the last stage are also
retained.

B. The Cost and Time Assumptions

In the reduced permutation network processor model, each
processor has an n-bit input and r simple shift networks with
ml , W L Z , . . . , mr inputs. These networks when combined together
provide a numerical range extending from 0 to 711 1 t 1 t 2 . . . 11) ~ - 1
for unsigned numbers and from - L ~ t t 1 n 1 2 . . . r r t r / 2] to
jm1rn2 . . . m,./2J for signed numbers in 2's complement form,

Let M = m L m 2 . . . nir. It was shown in [7] that a permutation net-
work processor encompassing r subnetworks with T I) I . ? t i 2 t 7 t r

inputs can be constructed by using O(lg'M) logic gates. The two
of the computations to be implemented on permutation network
processors, namely, the sum of 11'- Ir-bit 2's complement numbers and
the inner product of two 1Y-element vectors each of whose elements
is an n-bit 2's complement number requires that X Y - ' z J. Thus,
each of the iV permutation network processors needed for these two
computations can be constructed with O((Ig .V + 11) 2 1 logic gates.

The third computation, i.e., the product of two :V x iV matrices can
be carried out by performing 1Y' inner product operations. Thus, the
matrix multiplication problem can be solved by using LV'' permutation
network processors each constructed from O((Ig iY + i t) ') logic
gates.

As for the delay of the permutation network processors needed for
these three computations, it was shown in [7] that a permutation net-
work processor encompassing r subnetworks with T U , , r r t 2 , nt ,.
inputs has O(lg Ig J1) bit-level delay. Given that 41 PZ 2''-';V, it
follows that all three computations mentioned above can be performed
by using permutation network processors with O(I I + Ig 2') bit-level
delay.

We point out that these bit-level cost and delay complexities are
comparable with those for other parallel computer models. The last
two computations require a multiplier circuit for +bit operands and
this exacts O(n 2) bit-level cost to attain O(Ig t)) bit-level delay
regardless of the model used. Given this, in obtaining the cost and
time complexities of the algorithms that follow, we will assume that
our permutation network processors have constant cost and constant
time where the cost and time are expressed in word level as in other
parallel computer models.

111. INNER PRODUCT PROCFSSORS
In this section, we show how to sum Y wbit numbers and

compute real and complex inner products using permutation network
processors.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:19 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 12, DECEMBER 1994 1431

A. Summution of N n-Bit Numbers

Assume that N n-bit numbers to be added together are all in
2's complement form. This implies that the sum can be as large
as 2''-'X and to avoid a possible overflow, the dynamic range M
of the permutation network processor must satisfy 2"-'N 5 M / 2 ,
that is, 2 " N 5 ill.

The set ZAT = {0,1, . . . , hf - 1) under addition modulo M
forms a group which is isomorphic to a cyclic permutation group
((A);) of order A4 and generated by a permutation x defined
over (0 .1 , . . , M - 1). The isomorphism between (Zhf, + 2 b ~) and
((A);) is fixed by mapping a generator of Z,V~ onto K. Now let
M = m l m 2 . . 'TI),., where m, and m., are relatively prime for all
i # j; 1 5 i . j 5 r . For 2~1, we fix 1 as its generator and let x be
the product of I' disjoint cycles, T I , ~ 2 , . . . , K,, where

x times
-7

Noting that -X = 1 + 1 + 1 + . . . + 1, under the isomorphism fixed
by mapping I to 7r, element X E z.41 is mapped to rx =
(T I m . . . K,)" or since X I , XZ, . . . , A? are disjoint, X is mapped
to A: A;" . . . A;' . As a consequence, the sum XI + X Z + . . . + X!v
modulo ill, S, E Z.LI for 1 5 i 5 1%' is mapped to

_ s l + , \ f * y 2 + M ."+M'yjV ._ X ' l + A I . y L + M "+.\,*YN -- 7r1

where + 11 denotes modulo 111 addition. Since A* is a cycle of length
m,, and ~ 1 . x2. . . . , 7rr are disjoint

or by Horner's rule

where +,,,, denotes modulo m,: 1 5 i 5 r , addition.
To compute (4). we cascade A; permutation network processors

together and each X , ; 1 5 i 5 Ar is converted into its corresponding
residue code (s,, 1. .r .2 , . . . , sz , T) by using a binary residue encoder
such as one of those described in [7]. These converted residue
codes (x ! , ~ . .rt.z,. . . . T ~ , ~) : 1 5; i 5 M, are then used to set up
the switching states of corresponding permutation networks. The
complete algorithm for computing the summation of N n-bit numbers
on a permutation network processor is then given as follows.

Algorithm 1 (Summation of N n -bit 2's complement numbers)
Input: 1%' 71-bit 2's complement numbers, XI, .X2, . . . ,X,V.
Output: Sum of -1-1, -1-2, . . . , Xj\r in 2's complement form.
Step 1: Convert X z ' s into their corresponding binary residue codes
(. r h l , .r ' 2I-<,.), in parallel.
Step 2: Add X I , Sz. . . . ~ X l y ,

Step 2.1: Set up the switching states of permutation
network processors in parallel by the binary residue
codes obtained in Step 1.
Step 2.2: Feed all input lines marked 0. ml. ml +
m z , " . . m ~ + 7n2 + . . . + m,-l with a "1" and all
the other input lines with a "0."

Step 3: Decode the r-out-of-s residue code obtained at the outputs
of the last permutation network processor in the cascade into its
binary equivalent.
Fig. 2 shows an example with N = 3, n = 5, and XI = 13. X2 =

-12, and XB = 9. The shaded lines indicate the paths of "1" between
inputs and outputs. To avoid a possible overflow, the dynamic range
of the processor is chosen so that it satisfies 2",V 5 M , that is,
3 x 2s 5 M . Therefore, A i is chosen as 10.5 = 3 x 5 x 7 .

This algorithm requires O (N) processors and since it does not
contain any loop and each step takes O(1) time, the total execution
time of this algorithm is O(1).

B. Inner Product Processor

Let X = (X ~ , X Z . - . . , X N) and Y = (E'1.15:..,1>\7) be two
W-element vectors, where X , , ETz E Z A ~ = (0 , l M - l}, Then
the real inner product of X and Y is a real-valued function defined as

N

x . Y = x,1;.
J = 1

To compute XJY, on a permutation network processor, we note that
the multiplication modulo M over the set Zxr forms a monoid. Let
Zma = {0.1,2:.~.m1 - l} and (Z m z , x ~ , ~ ,) denote the monoid
under modulo m, multiplication of elements in Zm,: 1 5 I 5 T.

Let M = mlm2."m,. where 7 n l . m 2 , " ' , m , are all primes.
Let Z M = Z,,, I) Zrn2 f2 . . . 1 Z,, denote the direct product of
Z m t ; 1 5 i 5 r , whose elements are r-tuples (.rj, 12.. . . , T~), where
.rz E Zm,. For any (XI .TZ,...,~~).(~I,~/Z,...,~~) E 2, define

-

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:19 from IEEE Xplore. Restrictions apply.

1432 IEEE TRANSACTIONS ON COMPUTERS, VOL

0

1

2

3

4

5

6

7

8

9

10

1 1

12

13
14

X1 -13 x i = - 12 % -9

Fig. 2. The permutation network processor shown to compute 13 - 10512 + 1059 = 10.

43, NO. 12, DECEMBER 1994

1 result
-+O
+O
-+O
+1
-0
+ l
+O

-
-1
7 % &I
29
E T 2
I

Fig 3. Permutation network modulo 5 multiplier.

The corresponding permutation network real inner product processor
is constructed as follows. For each modulus, nc,, A‘ modulo m,
permutation network processors are cascaded. One operand of each
processor comes from the previous stage and the other operand comes
from the output of a modulo m, permutation network multiplier. An
example of modulo m, permutation network multiplier is shown in
Fig. 3 for m, = 5. Briefly, shaded boxes labeled by g code X and
Y into the powers of the generator of the modulo 5 multiplication
table, which, in this example, is 2. The 2-stage shift network then
computes the product of X and Y and the product is converted back
to a I-out-of-4 code by the shaded box labeled with gpl. The binary

product R = X Y is then obtained by converting this 1 -out-of-4 code
by a residue decoder. Note that X = 0, or J r = 0, or -Y = 0 and
I‘ = 0 are treated as special cases via the logic circuit before the
1 -out-of-5 decoder section. A more detailed description of modulo
inL permutation network multiplier can be found in [6] , [7].

The following algorithm shows how the inner product is carried
out using such multipliers.

Algorithm 2 (Real inner product of two vectors)
Input: Two vectors X = (X I , X z , . . . ,X,V) and Y =
(Yi,Yz;..,Yv), where each Xt and I-, is an n-bit 2’s
complement number.
Output: The real inner product of X and Y represented in 2’s
complement form.
Step 1: Convert each element of X and Y into its corresponding
residue code in parallel.
Step 2: Multiply E , ! and y,, for 1 5 j 5 :V and 1 5 i 5 ‘r
in parallel.
Step 3: Compute the inner product by adding together the products
obtained in Step 2 over the residue code domain.

Step 3.1: Set up the switching states of permutation
network processors in parallel by the binary residue
codes obtained in Step 2.
Step 3.2: Feed all input lines marked 0. m l , rnl +
m z ; . . , n i , + r n z + . . . + mr-l with a “1” and all
the other input lines with a “0.”

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:19 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTE!RS, VOL. 43, NO. 12, DECEMBER 1994 1433

processor 1 processor 2 processor 3 - I
mod3 mod3

’
mod3 0 P

1 permulalbn permutatbn pennutatbn ’
2-- networkadder network adder -- networkadder 2

1 --
I

Xi y1 x 2 y 2 x 3

1 -out-t,f-m i residue encoder (XII modulo i permutation nelwork multiplier

Fig. 4 The permutation network processor for computing the real inner-product of X and Y (1%’ = 3 and I I = 3)

Step 4: Decode the 1-out-of-s residue code obtained at the outputs
of the last permutation network processor in the cascade into its
binary equivalent.
An example with K = 3 and 11 = 3 is shown in Fig. 4. It is

easy to sce that Algorithm 2 requires O (N) processors and its total
execution time is O(1) since each step takes O(I) time.

We leave the construction of a complex inner product processor
to the reader and just note that the inner product of two N-element
complex vectors can also be computed in O(1) time using O(JV)
permutation network processors.

IV. MATRIX MULTIPLICATION

Let A and B be 2%’ x 2%‘ real matrices and C = A x B. C can

Algorithm 3 (Multiplication of two real matrices)
Input: Two .V x 3’ real matrices A and B. Each element of A
and B is an ,)-bit 2’s complement number.
Output: A real product matrix C = A x B.
Step 1: Convert each element of A and B into its corresponding
residue code in parallel.
Step 2: Compute the 3;’ inner products using Algorithm 2.
All inner product processors operate in parallel in Step 2. Since

each executes in O(1 time, Algorithm 3 takes O (1) time to execute
and it needs a total of -V2 inner product processors each having O(iV)
cost and hence its cost is O(:I7.‘’’ j .

The multiplication of two complex matrices can also be carried
out in O (1 j time using O (X”) permutation network processors using
four real matrix multiplications, one matrix addition, and one matrix
subtraction.

be computed in O(1) steps as follows.

V. CONCLUDING REMARKS
In this brief contribution, we proposed permutation network pro-

cessors to compute algebraic sums, inner and matrix products. It
has been shown that the algebraic sum of :\- u-bit 2’s complement
numbers can be computed in O(1) time on such a processor with
O(X) cost. The inner product of two N-element vectors (both real
and complex) with mbit elements can also be done in O(1) time
using a similar processor with O (N) cost. On the other hand, the
matrix multiplication takes O (I) time but with O(Y 3) permutation
network processors.

These results are important in that they establish that one can avoid
using conventional adder and multiplier circuits to carry out vector
and matrix computations.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their constructive
comments.

REFERENCES

[11 Selim G. Akl, The Design and Analysis of Parallel Algorirhms. Engle-
wood Cliffs, NJ: Prentice-Hall, 1989.

[2] D. M. Champion and J . Rothstein, “Immediate parallel solution of the
longest common subsequence problem,” in IEEE h t . Con$ Parallel
Processing, 1987, pp. 70-77.

[3] K. M. Elleithy, M. A. Bayoumi, and K. P. Lee, “ H (l g -V) archilecture
for RNS arithmetic decoding,” in IEEE 9th Comput. Arirh. Symp.. 1989,
pp. 202-209.

141 K. Hwang, Computer Arithmetic: Principle, Architecture. and Design.
New York: John Wiley, 1979.

[51 S. Lakshmivarahan and Sudarshan K. Dhall, Analvsis and 1lPvign of
Parallel Algorithms, McGraw-Hill Pub., 1990.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:19 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 12, DECEMBER 1994

M.-B. Lin and A. Yavuz Om$, “The design of a network-based arith-
metic processor,” Tech. Rep. UMIACS-TR-91-141, Univ. of Maryland,
College Park, MD, Oct. 1991.
M.-B. Lin, “Unified algebraic computations on permutation networks,”
Ph.D. dissertation, EE Dept., Univ. of Maryland, College Park, 1992.
M. Maresca and H. Li, “Connection autonomy in SIMD computers:
A VLSI implementation,” J. Parallel Distrib. Computing, vol. 7, pp.
302-320, 1989.
R. Miller, V. K. Prasanna Kumar, D. Reisis, and Q. F. Stout, “Data
movement operations and applications on reconfigurable VLSI arrays,”
in In!. Con$ Parallel Processing, St. Charles, IL, vol. I, Aug. 1988, pp.
205-208.
A. Yavuz Om$. V. G. J. Peris, and M. Yaman Om$, “Parallel modular
arithmetic on a permutation network,” in Znr. Con$ Parallel Processing,
St. Charles, IL, vol. I , Aug. 1991, pp. 706707.
S. J. Piestrak, “Design of residue generators and multi-operand modular
adders using carry-save adders,’’ in lEEE 10th Compur. Arith. Symp.,
1991. pp. 100-107.
W. Shen and A. Yavuz Orus, “Mapping algebraic formulas onto mesh
connected processor networks,” Inform. Sci. Syst. Con$, Princeton Univ.,
NJ, pp. 535-538, 1986.
S. P. Smith and H. C. Tomg, “Design of a fast inner product processor,”
in Prnc. IEEE 7th Compui. Arith. Symp., 1985. pp. 3843.
E. E. Swartzlander, Jr., B. K. Gilbert and I. S. Reed, “Inner product
computers,” IEEE Trans. Compuf., vol. (2-27. pp. 21-31, Jan. 1978.
B. F. Wang, G. H. Chen, and F. C. Lin, “Constant time sorting on a
processing array with a reconfigurable bus system,” Inform. Processing
Lett.. pp. 187-192, 1990.
B. F. Wang and G. H. Chen, “Constant time algorithms for the transitive
closure and some related graph problems on processor arrays with
reconfigurable bus systems,” IEEE Trans. Parallel Distrib. Sysr., vol.
I , pp. 500-507, Oct. 1990.

Structural and Tree Embedding Aspects
of Incomplete Hypercubes

Nian-Feng Tzeng and Hsing-Lung Chen

Absfract-Since the hypercube is not incrementally scalable, a variant
hypercube topology with more flexibility in the system size, called an
incomplete hypercube, is examined. An incomplete hypercube may also
result from a complete hypercube which operates in a degraded manner
after some nodes fail. Elementary properties, including diameter, mean
internode distance, and traffic density, of incomplete hypercubes with
size 2’’ + 2k, 0 5 k 5 n, are derived. Interestingly, traffic density
over links in such an incomplete hypercube is found to be bounded by 2
(messages per link per unit time), despite its structural nonhomogeneity.
Thus, cube Links can easily be constructed so as to avoid any single point
of congestion, guaranteeing good performance. The minimum incomplete
hypercubes able to embed binary trees with node adjacencies preserved
are determined.

Index Terms- Hypercubes, incomplete hypercubes, message routing,
network topology, structural properties, tree embeddings.

Manuscript received August 26, 1992; revised May 13, 1993 and December
16, 1993. this work was supported in part by the NSF under Grants MIP-
920308 and CCR-9300075 and by the State of Louisiana under Contract

N.-F. Tzeng is with the Center for Advanced Computer Studies, University
of Southwestern Louisiana, P.O. Box 705044433. Lafayette, LA 705044330
USA; e-mail: tzeng@cacs.usl.edu.

H.-L. Chen is with the Department of Electronic Engineering, National
Taiwan Institute of Technology, Taipei, Taiwan, R.O.C.

IEEE Log Number 9404364.

LEQSF(92-94)-RD-A-32.

I. INTRODUCTION
Unlike a complete hypercube, an incomplete hypercube allows for

the construction of a system with size not necessary a power of 2. It
may also result from a complete hypercube after some nodes become
faulty and the system is reconfigured, as discussed in [7]. Simple and
deadlock-free algorithms for routing and for broadcasting messages
in the incomplete hypercube have been developed in [5] . In this
brief contribution, we deal with the incomplete hypercube comprising
two complete hypercubes, one of size 2” and the other of size 2 k
(0 5 k 5 TL). A related structure introduced recently is the Fibonacci
cube, which consists of two smaller Fibonacci cubes of unequal sizes
and is a subgraph of a hypercube [2] .

Here we are interested in finding whether or not an incomplete
hypercube exhibits any heavy traffic link or node that may become
a vulnerable point with respect to performance and reliability. Struc-
tural properties of incomplete hypercubes, including diameter, mean
intemode distance, and traffic density, are obtained. The highest
traffic density over links in incomplete hypercubes is bounded by 2 ,
despite its nonhomogeneity. With bounded traffic density, incomplete
hypercubes are clearly superior to other nonhomogeneous topologies,
such as trees and stars, where points of congestion are likely to exist
and serious performance degradation may result because in such a
topology, the highest traffic density is proportional to its size. If
one wants to put a complete hypercube into operation even after
some nodes become faulty and the system is reconfigured into an
incomplete hypercube, cube links can easily be so designed that every
link is still below half saturated in the presence of faults to prevent
any traffic bottleneck from occurring.

In the second part of this work, embedding binary trees in the
incomplete hypercube is pursued and compared to that in its complete
counterpart. It is illustrated that the incomplete hypercube is capable
of better supporting binary trees than a compatible complete hyper-
cube. The embedding results also reveal that a complete hypercube
still can effectively support binary trees even after cube linkshodes
fail, provided that the operating portion of the injured hypercube is
no smaller than the respective incomplete hypercubes able to embed
those binary trees.

11. NOTATIONS AND BACKGROUND
An n-dimensional complete hypercube, denoted by H , , comprises

2” nodes, each with n bidirectional links connecting to 11 immediate
neighbors. An incomplete hypercube of interest IHL.‘ comprises two
complete cubes, H , and HA, which respectively have 2” and 2k’
nodes, where 0 5 k 5 13. Nodes in I H ; are labeled from 0 to
Y1 + 2k - 1 by an 01 + 1)-bit binary representation in such a way
that any two nodes connected by a link differ in their labels by exactly
one bit, and that nodes in H , are numbered from 0 to 2“ - 1, while
nodes in Hk are from 2” to 2” + 2k - 1. Fig. 1 shows an incomplete
hypercube with 12 nodes, I H : . A d-dimensional subcube in I H ;
contains 2d nodes and is represented by a string of + 1 symbols
over {0,1,*} such that there are exactly d * ’ s (which denote don’t
care). The link between two neighboring nodes ’4 and 13 is referred
to as A;. A path from node A to node 13 is denoted by -1;. and we
are interested in the shortest paths only. A link is assumed to have
link number i if it connects two nodes whose addresses differ in the
ith bit position (starting with the least significant bit as bit 0).

As opposed to those in a complete hypercube, nodes in an
incomplete hypercube no longer play an identical role. For instance,
every node in subcube (OO**) of I H ; shown in Fig. 1 has four links

0018-9340/94$04.00 0 1994 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on January 30, 2009 at 14:19 from IEEE Xplore. Restrictions apply.

mailto:tzeng@cacs.usl.edu

