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Constant Time Inner Product and Matrix 
Computations on Permutation Network Processors 

Ming-Bo Lin and A. Yavuz Oruq 

Abstract-Inner product and matrix operations find extensive use in 
algebraic computations. In this brief contribution, we introduce a new 
parallel computation model, called a permutation network processor, to 
carry out these computations efficiently. Unlike the traditional parallel 
computer architectures, computations on this model are carried out by 
composing permutations on permutation networks. We show that the sum 
of N algebraic numbers on this model can be computed in O(1) time 
using N processors. We further show that the inner product and matrix 
multiplication can both be computed on this model in O(1) time at the 
cost of O(.V) and 0 ( N 3 ) ,  respectively, for N element vectors, and ,V x N 
matrices. These results compare well with the time and cost complexities 
of other high level parallel computer models such as PRAM and CRCW 
PRAM. 

Index Terms-Complex inner product, complex matrix multiplication, 
permutation networks, real inner product, and real matrix multiplication. 

I. INTRODUCTION 
Inner product and matrix operations form the core of computations 

of vector and array processors and signal and image processing 
algorithms. Traditional architectures for carrying out such operations 
are based on reducing vector computations into scalar operations 
such as binary addition and multiplication [13], [14]. As a result, 
much of the computations in vec:tor and array processors is handled 
by conventional arithmetic circuits such as carry look ahead adders, 
recoded and cellular array multipliers and dividers [4]. While these 
conventional circuits are optimized for speed and hardware, they still 
rely on a variety of building blmocks such as adder, subtractor and 
multiplier cells which often lead to nonuniform arithmetic circuits 
for vector processors. 

In this brief contribution, we propose a new concept to cany 
out vector and matrix computations. Unlike the traditional archi- 
tectures, this concept is based on coding not only the operands 
but also the operations over the operands in such a way that 
a vector or matrix computation reduces to composing permuta- 
tion maps. Each operand is coded into a permutation and addition 
or multiplication of two operands is carried out by composing 
the permutations that correspond to these operands on a permu- 
tation network. As a result, bo,th addition and multiplication are 
reduced to a single computation, Le., that of composing permuta- 
tions. In addition, any other computation involving addition, sub- 
traction and multiplication operations are also reduced to composing 
permutations. 

We show that, on this new computation model, called a permutation 
network processor, the sum of il’ n-bit numbers, the inner product of 
two vectors, each containing LV n-bit elements, and the multiplication 
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of two N x N matrices with n-bit entries can all be computed in O( 1) 
steps. The first two computations require O ( N )  processors and the 
matrix multiplication requires ( N 3 )  processors, where each processor 
handles an n-bit input, and has O ( ( n  + 1gN)’) bit-level cost and 
O(n + IgN) bit-level delay. 

We note that these results compare well with the complexi- 
ties for the same computations on other models. For example, 
on a PRAM model [ I ,  51, all three computations take O(1gN) 
time with the same numbers of processors, where each processor 
has two O ( n  + IgN)-bit inputs, and uses arithmetic circuits with 
O(nZ + 1gN) bit-level cost. On a cube-connected parallel com- 
puter, the same three computations also take O(1gN) time with 
the same numbers of processors and with the same processor bit- 
level complexity [I]. On the combining CRCW PRAM, the same 
three computations can all be done in 0(1) time and with the 
same numbers of processors, where each processor has two O(n + 
IgN)-bit inputs, and with O(n2 + 1gN) bit-level cost. In addition, 
this model must have a circuit to combine up to N concurrent 
writes. 

We also note that, even though the permutation network processor 
model stands on its own, it ties with some earlier computation 
models that were reported in the literature. One such model, called 
a processing network, was given in [I21 where a mesh of pro- 
cessing elements was used to compute certain algebraic formu- 
las. The processing elements in this model can be programmed 
for arithmetic and routing functions whose combinations lead to 
various algebraic expressions on the mesh topology. The main 
difference between this model and the permutation network pro- 
cessor model is that the latter does not rely on an explicit use 
of adder or multiplier circuits; rather it combines them together 
using shift permutations. More recently, a new parallel computer 
model, called a reconfigurable bus system, has been introduced 
to solve a wide range of problems including sorting problems 
[15], graph problems [9], [16], and string problems [2]. All these 
problems have been shown to be solvable in O(1) time on the 
reconfigurable bus system model. As in the processing network 
model, processors are connected in this model by some fixed topology 
such as the mesh, and each processor can be programmed for 
some data processing as well as routing functions. It is assumed 
that the signals can be broadcast between processors in constant 
time regardless of how far the broadcast is carried [SI, [15], [16]. 
The essence of this assumption is that once the processors are 
simultaneously programmed for some routing functions, the signals 
that pass through them only encounter a propagation delay which 
is short enough so as to be considered a constant. The same 
assumption also holds for our model. Again, the main difference 
between this model and the permutation network processor is that 
the latter relies only on permutation maps while the former al- 
lows its processors to perform both data processing and routing 
functions. 

Finally, we should note that all computations described in the brief 
contribution are carried out modulo N. In the case that J?i is not 
a power of 2 (which is typically the case because of coprimality 
contstraints), the results should be converted to binary and this will 
exact additional time and hardware cost. Also, if the operands are 
given in binary they must be encoded before they can be computed on. 
Our complexity expressions do not include these additional encoding 
and decoding time and cost. The time and hardware complexities 
of encoding and decoding steps are given in [6], [7] and will be 
published elsewhere. 
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Fig. 1. Organization of a permutation network arithmetic processor 

11. THE PERMUTATION NETWORK PROCESSOR MODEL 

The computations to be described in subsequent sections all rely 
on a permutation network processor model which was introduced in 
[IO].  Here we give a brief overview of this model and introduce some 
changes so as to make it suitable for these computations. 

A. The Model 

A permutation network processor is obtained by cascading three 
components together as shown in Fig. 1: an r-out-of-s residue 
encoder, a permutation network stage, and an r-out-of-s residue 
decoder, where r and s are positive integers. The r-out-of-s residue 
encoder has rn  inputs, representing an m-bit number X ,  and r 
sets of outputs, XI. X 2 .  . . . , XT., where X ,  contains m outputs, 
for i = 1 5 2 : . . , r .  Based on the value of its input -Y, the r -  
out-of-s residue encoder sets exactly one output in each X ,  to 
1 and all other outputs to 0. More precisely, the j t h  output in 
S, is set to 1, where j = X mod m,. The r-out-of-s residue 
decoder is an r-out-of-s residue encoder whose inputs and outputs 
are switched. That is, it has r sets of inputs R1. R z . .  . . , R,. each 
of which contains a 1 in exactly one of its inputs, and a set of m 
outputs that represents an n-bit result. The 1's in RI , R2,. . . . R, 
are combined into an ~n-bi t  result whose residues with respect to 
moduli rr? 1,  ni 2 ,  . . . . m 7' are indicated by the positions of 1's in 
R I , Rz, . . . . R, . The variable s specifies the number of outputs 
(inputs) of the T-out-of-s residue encoder (decoder). That is, s = 
n 1 1  + In., + . . .  + 172.. 

The center stage of the permutation network arithmetic processor 
consists of a permutation network with .s inputs and s outputs. In 
addition to s inputs that are connected to the outputs of the r-  
out-of-s residue encoder, the permutation network also has an n-bit 
control input that represents the second operand I' to the arithmetic 
processor. The permutation network encompasses T subnetworks 
 VI, L V 2 , .  . . . iVT, where the lines in S, from the r-out-of-s residue 
encoder form the inputs of network 3' and the lines in R, form 
its outputs. Network Y, consists of rlg ni,] stages of switches, 
numbered rig m,1 - 1 , .  .., 1 ,  0 in that order, from left to right, 
each having nzz inputs and m ,  outputs such that the switch in  stage 
k .  !I- = 0.1, '  . . . [lg tn, ]  - 1 has two switching states: 

state 0: input .j is connected to output j ,  for all j = 0.1.. . , 
n,, - 1; 
state 1: input .j is connected to output j + 2k mod m, ,  for all 
j = O . l : . . , ~ n ,  - 1. 

Thus, the switch in stage k of network N, realizes either the 
identity permutation on its inputs (state 0) or the circular right 
shift permutation where all inputs are circularly shifted to right by 

2 k  mod m, positions (state 1 ) .  The permutations that are realized 
by networks N 1 .  iY2,. . . , Nr are determined by the residues, y, = 
Y mod m,: 1 5 i 5 r .  The residue y, is computed from k' by 
the binary residue encoder in Fig. 1 which converts Y mod nit to 
its binary representation. The kth least significant bit of y, then 
determines the state of the switch in the kth stage in network Y,.  
If that bit is 0 then the stage is set to state 0 and if it is 1 then the 
stage is set to state I .  

In most of the computations that follow, we will need to cascade 
several permutation network processors together. In such cases, the 
adjacent T-out-of-s residue decoders and encoders in the intermediate 
stages of the cascade are redundant (they cancel out), and therefore, 
will be removed from the model. In this reduced model, we only 
retain the shift network and binary residue encoder sections of the 
permutation network arithmetic processors in the intermediate stages. 
The r-out-of-s residue encoder of the processor in the first stage and 
the r-out-of-s decoder of the processor in the last stage are also 
retained. 

B. The Cost and Time Assumptions 

In the reduced permutation network processor model, each 
processor has an n-bit input and r simple shift networks with 
ml , W L Z , .  . . , mr inputs. These networks when combined together 
provide a numerical range extending from 0 to 711 1 t 1 t 2  . . . 11) ~ - 1 
for unsigned numbers and from - L ~ t t 1 n 1 2  . . . r r t r / 2 ]  to 
jm1rn2 . . .  m,./2J for signed numbers in 2's complement form, 

Let M = m L m 2  . . . nir. It was shown in [7] that a permutation net- 
work processor encompassing r subnetworks with T I )  I .  ? t i 2 . .  . . . t 7 t r  

inputs can be constructed by using O(lg'M) logic gates. The two 
of the computations to be implemented on permutation network 
processors, namely, the sum of 11'- Ir-bit 2's complement numbers and 
the inner product of two 1Y-element vectors each of whose elements 
is an n-bit 2's complement number requires that X Y - '  z J. Thus, 
each of the iV permutation network processors needed for these two 
computations can be constructed with O( (Ig .V + 11  ) 2  1 logic gates. 

The third computation, i.e., the product of two :V x iV matrices can 
be carried out by performing 1Y' inner product operations. Thus, the 
matrix multiplication problem can be solved by using LV'' permutation 
network processors each constructed from O((Ig iY + i t ) ' )  logic 
gates. 

As for the delay of the permutation network processors needed for 
these three computations, it was shown in [7] that a permutation net- 
work processor encompassing r subnetworks with T U , ,  r r t  2 .  . . . , nt ,. 
inputs has O(lg Ig J1) bit-level delay. Given that 41 PZ 2''-';V, it 
follows that all three computations mentioned above can be performed 
by using permutation network processors with O( I I  + Ig 2') bit-level 
delay. 

We point out that these bit-level cost and delay complexities are 
comparable with those for other parallel computer models. The last 
two computations require a multiplier circuit for +bit operands and 
this exacts O( n 2 )  bit-level cost to attain O( Ig t )  ) bit-level delay 
regardless of the model used. Given this, in obtaining the cost and 
time complexities of the algorithms that follow, we will assume that 
our permutation network processors have constant cost and constant 
time where the cost and time are expressed in word level as in other 
parallel computer models. 

111. INNER PRODUCT PROCFSSORS 
In this section, we show how to sum Y wbit numbers and 

compute real and complex inner products using permutation network 
processors. 
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A. Summution of N n-Bit Numbers 

Assume that N n-bit numbers to be added together are all in 
2's complement form. This implies that the sum can be as large 
as 2''-'X and to avoid a possible overflow, the dynamic range M 
of the permutation network processor must satisfy 2"-'N 5 M / 2 ,  
that is, 2 " N  5 ill. 

The set ZAT = {0,1, . . . , hf - 1) under addition modulo M 
forms a group which is isomorphic to a cyclic permutation group 
((A);) of order A4 and generated by a permutation x defined 
over (0 .1 , .  . , M - 1). The isomorphism between (Zhf, + 2 b ~ )  and 
((A);) is fixed by mapping a generator of Z,V~ onto K. Now let 
M = m l  m 2 . .  'TI),., where m, and m., are relatively prime for all 
i # j; 1 5 i .  j 5 r .  For 2~1,  we fix 1 as its generator and let x be 
the product of I' disjoint cycles, T I ,  ~ 2 , .  . . , K,, where 

x times 
-7 

Noting that -X = 1 + 1 + 1 + . . . + 1, under the isomorphism fixed 
by mapping I to 7r, element X E z.41 is mapped to rx = 
( T I  m . . . K, )"  or since X I ,  XZ, . . . , A? are disjoint, X is mapped 
to A: A;" . . . A;' . As a consequence, the sum XI + X Z  + . . . + X!v 
modulo ill, S, E Z.LI for 1 5 i 5 1%' is mapped to 

_ s l + , \ f * y 2 + M  ."+M'yjV ._ X ' l + A I . y L + M  "+.\,*YN -- 7r1 

where + 11 denotes modulo 111 addition. Since A* is a cycle of length 
m,, and ~ 1 .  x2. . . . , 7rr are disjoint 

or by Horner's rule 

where +,,,, denotes modulo m,:  1 5 i 5 r ,  addition. 
To compute (4). we cascade A; permutation network processors 

together and each X , ;  1 5 i 5 Ar is converted into its corresponding 
residue code (s,, 1. .r .2 ,  . . . , sz , T  ) by using a binary residue encoder 
such as one of those described in [7]. These converted residue 
codes ( x ! , ~ .  .rt.z,.  . . . T ~ , ~ ) :  1 5; i 5 M, are then used to set up 
the switching states of corresponding permutation networks. The 
complete algorithm for computing the summation of N n-bit numbers 
on a permutation network processor is then given as follows. 

Algorithm 1 (Summation of N n -bit 2's complement numbers) 
Input: 1%' 71-bit 2's complement numbers, XI, .X2, . . . ,X,V. 
Output: Sum of -1-1, -1-2, . . . , Xj\r in 2's complement form. 
Step 1: Convert X z ' s  into their corresponding binary residue codes 
( . r h l ,  .r ' 2 .  . . . . .I-<,. ), in parallel. 
Step 2: Add X I  , Sz. . . . ~ X l y ,  

Step 2.1: Set up the switching states of permutation 
network processors in parallel by the binary residue 
codes obtained in Step 1. 
Step 2.2: Feed all input lines marked 0. ml. ml + 
m z , " . . m ~  + 7n2 + . . .  + m,-l with a "1" and all 
the other input lines with a "0." 

Step 3: Decode the r-out-of-s residue code obtained at the outputs 
of the last permutation network processor in the cascade into its 
binary equivalent. 
Fig. 2 shows an example with N = 3, n = 5, and XI = 13. X2 = 

-12, and XB = 9. The shaded lines indicate the paths of "1" between 
inputs and outputs. To avoid a possible overflow, the dynamic range 
of the processor is chosen so that it satisfies 2",V 5 M ,  that is, 
3 x 2s 5 M .  Therefore, A i  is chosen as 10.5 = 3 x 5 x 7 .  

This algorithm requires O ( N )  processors and since it does not 
contain any loop and each step takes O( 1) time, the total execution 
time of this algorithm is O( 1 ). 

B. Inner Product Processor 

Let X = ( X ~ , X Z . - . . , X N )  and Y = (E'1.15:..,1>\7) be two 
W-element vectors, where X , ,  ETz E Z A ~  = ( 0 , l . .  . . . M - l}, Then 
the real inner product of X and Y is a real-valued function defined as 

N 

x . Y = x,1;. 
J = 1  

To compute XJY, on a permutation network processor, we note that 
the multiplication modulo M over the set Zxr forms a monoid. Let 
Zma = {0.1,2:.~.m1 - l} and ( Z m z ,  x ~ , ~ , )  denote the monoid 
under modulo m, multiplication of elements in Zm,: 1 5 I 5 T. 

Let M = mlm2."m,.  where 7 n l . m 2 , " ' , m ,  are all primes. 
Let Z M  = Z,,, I ) Zrn2 f2 . . . 1 Z,, denote the direct product of 
Z m t ;  1 5 i 5 r ,  whose elements are r-tuples (.rj, 12.. . . , T~ ), where 
.rz E Zm,. For any (XI .TZ,...,~~).(~I,~/Z,...,~~) E 2, define 

- 
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Fig. 2. The permutation network processor shown to compute 13 - 10512 + 1059 = 10. 
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Fig 3. Permutation network modulo 5 multiplier. 

The corresponding permutation network real inner product processor 
is constructed as follows. For each modulus, nc,, A‘ modulo m, 
permutation network processors are cascaded. One operand of each 
processor comes from the previous stage and the other operand comes 
from the output of a modulo m, permutation network multiplier. An 
example of modulo m, permutation network multiplier is shown in 
Fig. 3 for m, = 5. Briefly, shaded boxes labeled by g code X and 
Y into the powers of the generator of the modulo 5 multiplication 
table, which, in this example, is 2. The 2-stage shift network then 
computes the product of X and Y and the product is converted back 
to a I-out-of-4 code by the shaded box labeled with gpl. The binary 

product R = X Y  is then obtained by converting this 1 -out-of-4 code 
by a residue decoder. Note that X = 0, or J r  = 0, or -Y = 0 and 
I‘ = 0 are treated as special cases via the logic circuit before the 
1 -out-of-5 decoder section. A more detailed description of modulo 
inL permutation network multiplier can be found in [ 6 ] ,  [7]. 

The following algorithm shows how the inner product is carried 
out using such multipliers. 

Algorithm 2 (Real inner product of two vectors) 
Input: Two vectors X = ( X I ,  X z , . . .  ,X,V) and Y = 
(Yi,Yz;..,Yv), where each Xt and I-, is an n-bit 2’s 
complement number. 
Output: The real inner product of X and Y represented in 2’s 
complement form. 
Step 1: Convert each element of X and Y into its corresponding 
residue code in parallel. 
Step 2: Multiply E , !  and y,, for 1 5 j 5 :V and 1 5 i 5 ‘r 
in parallel. 
Step 3: Compute the inner product by adding together the products 
obtained in Step 2 over the residue code domain. 

Step 3.1: Set up the switching states of permutation 
network processors in parallel by the binary residue 
codes obtained in Step 2. 
Step 3.2: Feed all input lines marked 0. m l  , rnl + 
m z ; . . , n i ,  + r n z  + . . .  + mr-l with a “1” and all 
the other input lines with a “0.” 
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Fig. 4 The permutation network processor for computing the real inner-product of X and Y (1%’ = 3 and I I  = 3) 

Step 4: Decode the 1-out-of-s residue code obtained at the outputs 
of the last permutation network processor in the cascade into its 
binary equivalent. 
An example with K = 3 and 11 = 3 is shown in Fig. 4. It is 

easy to sce that Algorithm 2 requires O ( N )  processors and its total 
execution time is O( 1) since each step takes O( I )  time. 

We leave the construction of a complex inner product processor 
to the reader and just note that the inner product of two N-element 
complex vectors can also be computed in O( 1) time using O( JV) 
permutation network processors. 

IV. MATRIX MULTIPLICATION 

Let A and B be 2%’ x 2%‘ real matrices and C = A x B. C can 

Algorithm 3 (Multiplication of two real matrices) 
Input: Two .V x 3’ real matrices A and B. Each element of A 
and B is an ,)-bit 2’s complement number. 
Output: A real product matrix C = A x B. 
Step 1: Convert each element of A and B into its corresponding 
residue code in parallel. 
Step 2: Compute the 3;’ inner products using Algorithm 2. 
All inner product processors operate in parallel in Step 2. Since 

each executes in O(  1 time, Algorithm 3 takes O (  1) time to execute 
and it needs a total of -V2 inner product processors each having O( iV) 
cost and hence its cost is O( :I7.‘’’ j .  

The multiplication of two complex matrices can also be carried 
out in O (  1 j time using O (  X” ) permutation network processors using 
four real matrix multiplications, one matrix addition, and one matrix 
subtraction. 

be computed in O(1) steps as follows. 

V. CONCLUDING REMARKS 
In this brief contribution, we proposed permutation network pro- 

cessors to compute algebraic sums, inner and matrix products. It 
has been shown that the algebraic sum of :\- u-bit 2’s complement 
numbers can be computed in O( 1) time on such a processor with 
O( X)  cost. The inner product of two N-element vectors (both real 
and complex) with mbit elements can also be done in O(1) time 
using a similar processor with O ( N )  cost. On the other hand, the 
matrix multiplication takes O (  I )  time but with O( Y 3  ) permutation 
network processors. 

These results are important in that they establish that one can avoid 
using conventional adder and multiplier circuits to carry out vector 
and matrix computations. 
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Structural and Tree Embedding Aspects 
of Incomplete Hypercubes 

Nian-Feng Tzeng and Hsing-Lung Chen 

Absfract-Since the hypercube is not incrementally scalable, a variant 
hypercube topology with more flexibility in the system size, called an 
incomplete hypercube, is examined. An incomplete hypercube may also 
result from a complete hypercube which operates in a degraded manner 
after some nodes fail. Elementary properties, including diameter, mean 
internode distance, and traffic density, of incomplete hypercubes with 
size 2’’ + 2k, 0 5 k 5 n, are derived. Interestingly, traffic density 
over links in such an incomplete hypercube is found to be bounded by 2 
(messages per link per unit time), despite its structural nonhomogeneity. 
Thus, cube Links can easily be constructed so as to avoid any single point 
of congestion, guaranteeing good performance. The minimum incomplete 
hypercubes able to embed binary trees with node adjacencies preserved 
are determined. 
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I. INTRODUCTION 
Unlike a complete hypercube, an incomplete hypercube allows for 

the construction of a system with size not necessary a power of 2. It 
may also result from a complete hypercube after some nodes become 
faulty and the system is reconfigured, as discussed in [7]. Simple and 
deadlock-free algorithms for routing and for broadcasting messages 
in the incomplete hypercube have been developed in [ 5 ] .  In this 
brief contribution, we deal with the incomplete hypercube comprising 
two complete hypercubes, one of size 2” and the other of size 2 k  
(0  5 k 5 TL). A related structure introduced recently is the Fibonacci 
cube, which consists of two smaller Fibonacci cubes of unequal sizes 
and is a subgraph of a hypercube [ 2 ] .  

Here we are interested in finding whether or not an incomplete 
hypercube exhibits any heavy traffic link or node that may become 
a vulnerable point with respect to performance and reliability. Struc- 
tural properties of incomplete hypercubes, including diameter, mean 
intemode distance, and traffic density, are obtained. The highest 
traffic density over links in incomplete hypercubes is bounded by 2 ,  
despite its nonhomogeneity. With bounded traffic density, incomplete 
hypercubes are clearly superior to other nonhomogeneous topologies, 
such as trees and stars, where points of congestion are likely to exist 
and serious performance degradation may result because in such a 
topology, the highest traffic density is proportional to its size. If 
one wants to put a complete hypercube into operation even after 
some nodes become faulty and the system is reconfigured into an 
incomplete hypercube, cube links can easily be so designed that every 
link is still below half saturated in the presence of faults to prevent 
any traffic bottleneck from occurring. 

In the second part of this work, embedding binary trees in the 
incomplete hypercube is pursued and compared to that in its complete 
counterpart. It is illustrated that the incomplete hypercube is capable 
of better supporting binary trees than a compatible complete hyper- 
cube. The embedding results also reveal that a complete hypercube 
still can effectively support binary trees even after cube linkshodes 
fail, provided that the operating portion of the injured hypercube is 
no smaller than the respective incomplete hypercubes able to embed 
those binary trees. 

11. NOTATIONS AND BACKGROUND 
An n-dimensional complete hypercube, denoted by H , ,  comprises 

2” nodes, each with n bidirectional links connecting to 11 immediate 
neighbors. An incomplete hypercube of interest IHL.‘ comprises two 
complete cubes, H ,  and HA, which respectively have 2” and 2k’ 
nodes, where 0 5 k 5 13. Nodes in I H ;  are labeled from 0 to 
Y1 + 2k - 1 by an 01 + 1)-bit binary representation in such a way 
that any two nodes connected by a link differ in their labels by exactly 
one bit, and that nodes in H ,  are numbered from 0 to 2“ - 1, while 
nodes in Hk are from 2” to 2” + 2k - 1. Fig. 1 shows an incomplete 
hypercube with 12 nodes, I H : .  A d-dimensional subcube in I H ;  
contains 2d nodes and is represented by a string of + 1 symbols 
over {0,1,*} such that there are exactly d * ’ s  (which denote don’t 
care). The link between two neighboring nodes ’4 and 13 is referred 
to as A;. A path from node A to node 13 is denoted by -1;. and we 
are interested in the shortest paths only. A link is assumed to have 
link number i if it connects two nodes whose addresses differ in the 
ith bit position (starting with the least significant bit as bit 0). 

As opposed to those in a complete hypercube, nodes in an 
incomplete hypercube no longer play an identical role. For instance, 
every node in subcube (OO**) of I H ;  shown in Fig. 1 has four links 
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